Factorial and Noetherian Subrings of Power Series Rings
نویسندگان
چکیده
Let F be a field. We show that certain subrings contained between the polynomial ring F [X] = F [X1, · · · , Xn] and the power series ring F [X][[Y ]] = F [X1, · · · , Xn][[Y ]] have Weierstrass Factorization, which allows us to deduce both unique factorization and the Noetherian property. These intermediate subrings are obtained from elements of F [X][[Y ]] by bounding their total X-degree above by a positive real-valued monotonic up function λ on their Y -degree. These rings arise naturally in studying p-adic analytic variation of zeta functions over finite fields. Future research into this area may study more complicated subrings in which Y = (Y1, · · · , Ym) has more than one variable, and for which there are multiple degree functions, λ1, · · · , λm. Another direction of study would be to generalize these results to k-affinoid algebras.
منابع مشابه
Subrings of Artinian and Noetherian Rings
An easy consequence of this is that a left Noetherian (respectively left Artinian) ring which is finitely generated over its center is right Noetherian (respectively right Artinian). Theorem 1 follows easily from Theorem 2, which gives a partial converse to the following standard fact: IfR C S are rings, and ifQ is an injective R-module, then Hom~(S, Q) is an injective S-module (this follows, f...
متن کاملNoetherian Skew Inverse Power Series Rings
We study skew inverse power series extensions R[[y−1; τ, δ]], where R is a noetherian ring equipped with an automorphism τ and a τ -derivation δ. We find that these extensions share many of the well known features of commutative power series rings. As an application of our analysis, we see that the iterated skew inverse power series rings corresponding to nth Weyl algebras are complete, local, ...
متن کاملFactorization Properties of Subrings in Trigonometric Polynomial Rings
We explore the subrings in trigonometric polynomial rings and their factorization properties. Consider the ring S′ of complex trigonometric polynomials over the field Q(i) (see [11]). We construct the subrings S′ 1, S′ 0 of S′ such that S′ 1 ⊆ S′ 0 ⊆ S′. Then S′ 1 is a Euclidean domain, whereas S′ 0 is a Noetherian HFD. We also characterize the irreducible elements of S′ 1, S′ 0 and discuss amo...
متن کاملPure Subrings of Regular Rings Are Pseudo-rational
We prove a generalization of the Hochster-Roberts-Boutot-Kawamata Theorem conjectured in [1]: let R → S be a pure homomorphism of equicharacteristic zero Noetherian local rings. If S is regular, then R is pseudo-rational, and if R is moreover Q-Gorenstein, then it is pseudo-log-terminal.
متن کاملON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010